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Machine learning approaches have seen a considerable number of applications in human

movement modeling but remain limited for motor learning. Motor learning requires that

motor variability be taken into account and poses new challenges because the algorithms

need to be able to differentiate between new movements and variation in known ones. In

this short review, we outline existing machine learning models for motor learning and their

adaptation capabilities. We identify and describe three types of adaptation: Parameter

adaptation in probabilistic models, Transfer and meta-learning in deep neural networks,

and Planning adaptation by reinforcement learning. To conclude, we discuss challenges

for applying these models in the domain of motor learning support systems.
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1. INTRODUCTION

The use of augmented feedback on movements enables the development of interactive systems
designed to facilitate motor learning. Such systems, which we refer to as motor learning support
systems, require the movement data be captured and processes and that augmented feedback be
returning to the users. These systems have primarily been investigated in rehabilitation [e.g., motor
recovery after injury (Kitago and Krakauer, 2013)] or in other forms of motor learning-inducing
contexts, such as dance pedagogy (Rivière et al., 2019) or entertainment (Anderson et al., 2013).

Motor learning support systems model human movements, taking into account the underlying
learning mechanisms. While computational models have been proposed for simple forms of motor
learning (Emken et al., 2007), modeling the processes at play inmore complex skill learning remains
challenging. Motor learning usually refers to two types of mechanisms: motor adaptation and
motor skill acquisition. The former, motor adaptation, is the process by which the motor system
adapts to perturbations in the environment (Wolpert et al., 2011). Adaptation tasks take place over
a rather short time span (hours or days) and do not involve learning a newmotor policy. The latter,
motor skill acquisition, involves learning a new control policy, including novel movement patterns
and shifts in speed-accuracy trade-offs (Shmuelof et al., 2012; Diedrichsen and Kornysheva, 2015).
Complex skills are typically learned over months or years (Anders Ericsson, 2008; Yarrow et al.,
2009).

The need for computational advances in motor learning research has recently been pointed
out in the field of neurorehabilitation (Reinkensmeyer et al., 2016; Santos, 2019). We believe that
data-driven strategies using machine learning represent a complementary approach to analytical
models of movement learning. Recent results in machine learning have shown impressive advances
in movement modeling, such as action recognition or movement prediction (Rudenko et al.,
2019). However, it is still difficult to apply such approaches to motor learning support systems. In
particular, computational models must meet specific adaptation requirements in order to address
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the different variability mechanisms induced by motor
adaptation and motor skill learning. These models have
to account for both fine-grained changes in movement
execution arising from motor adaptation mechanisms and
more radical changes in movement execution due to skill
acquisition mechanisms.

We propose a short review of the adaptation capabilities
of machine learning applied to movement modeling. The
objective of this review is not to be exhaustive but rather
to provide an overview of recent publications on machine
learning that we found significant for motor learning research.
We believe that such an overview is currently missing and
can offer novel research perspectives, targeting primarily
researchers in the field of motor learning and behavioral sciences.
In order to build the review presented in this paper, we
focused on recent articles (typically <10 years old). At the
time of writing (the end of 2019), we queried four online
databases (Google Scholar, PubMed, Arxiv, ACMDigital Library)
by combining the following keywords: “Human Movement,”
“Motor Model,” “Modeling/Modelling,” “Tracking,” “Control,”
“Synthesis,” “Movement Generation,” “Movement Prediction,”
“On-line Learning,” “Adaptation,” “Gesture Recognition,” “Deep
Learning,” and “Imitation Learning.” We then compiled the
papers in a spreadsheet and conducted a selection based on the
type of model adaptation, the modeling technique, the field, and
the input data considered. We summarize the review in Table 1

and identify three adaptation categories in machine learning-
based humanmodeling: (1) Parameter adaptation in probabilistic
models, (2) Transfer and meta-learning in deep neural networks,
and (3) Planning adaptation by reinforcement learning. We
present the selected papers according to the type of adaptation
and discuss their use in motor learning research.

2. PARAMETER ADAPTATION IN
PROBABILISTIC MODELS

Research in movement recognition and generation has, for a
long time, used parametric probabilistic approaches, such as
Gaussian Mixture Models (GMM), Hidden Markov Models
(HMM), or Dynamic Bayesian Networks (DBN). These models
are characterized by a set of trained parameters that can be
adapted during execution, either by providing new examples
during the interaction or adapting the model parameters online
according to the characteristics of the task.

GMMs have been used in robotics andHCI to learnmovement
trajectory models from a few demonstrations given by a human
teacher (Calinon et al., 2007). In robotics, Calinon (2016)
proposed such an approach to adapt the robot movement
parameters when new target coordinates are set for the robot
arm. The underlying model is a GMM trained from a few
human movement demonstrations. In the context of movement-
based interaction, Françoise et al. (2016) proposed a one-shot
user adaptation process where the input movement associated
with a sequence of sound synthesis parameters can be estimated
from a single demonstration in order to retrain the underlying
GMM. They showed that user-adapted feedback can support

the consistency of movement execution but that the adaptation
process is efficient for limited movement variations. Sarasua et al.
(2016) used GMM for soft recognition of conducting gestures
that can adapt easily to user idiosyncrasies. The GMM-based
mapping is learned from gesture demonstrations performed
while listening to the desired musical rendering. The model is
able to interpolate between demonstrations but cannot account
for dramatic input variations. When tasks require that the
dynamics and temporal evolution of the movement be encoded,
generative sequence models, such as HMMs have been applied
to gesture recognition from a few examples (Françoise and
Bevilacqua, 2018) as well as movement generation (Tilmanne
et al., 2012). Such adaptation techniques are often efficient
when variations remain small in comparison with the overall
movement dynamics.

Another approach, proposed by Caramiaux et al. (2015),
consists of tracking probability distribution parameters
representing input movement variations from a set of gesture
templates. Tracking uses particle filtering, which updates state
parameters representing movement variations (such as scale,
speed, or orientation). The method can account for large,
slow variations. However, the tracking method does not learn
the structure of the gesture variations and forgets previously
observed states.

Finally, parametric probabilistic models can be trained online
to account for new movement classes. Kulić et al. (2008, 2012)
proposed an HMM-based iterative training procedure for gesture
recognition and generation. The method relies on unsupervised
movement segmentation, from which it automatically extracts
existing and new primitives (using Kullback-Leibler divergence).
This strategy enables both the fine-grained adaptation of existing
motor primitives and the extension of the vocabulary of motor
skills. However, unsupervised segmentation remains difficult for
complex gestures, and the learning remains cumulative, with an
ever-growing vocabulary rather than a continuous adaptation to
motor learning. Other online strategies for segmentation with
adaptive behavior are described in Kulic et al. (2009).

In summary, parametric adaptation enables fine-grained
adaptation to task variations and restricted input movement
variations. The typical use case is learning by demonstration
(in human-robot interaction), or personalization (in human-
machine interaction).

3. TRANSFER AND META-LEARNING IN
DEEP NEURAL NETWORKS

Transfer and meta-learning are techniques aiming to accelerate
and improve the learning procedures of complex computational
models, such as Deep Neural Networks (DNN). The objective
is to adapt pre-trained DNN efficiently to new tasks or
application domains that are unseen during training. This
research is based on the literature on deep learning applied
to movement modeling, which typically involves large datasets
and benchmark-driven tests. The most popular approaches of
this kind are Recurrent Neural Networks (RNN) (Fragkiadaki
et al., 2015; Mattos et al., 2015; Alahi et al., 2016; Ghosh et al.,
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TABLE 1 | Summary of the papers selected in our short survey, classified according to the type of adaptation involved in machine learning-based movement modeling.

Type of adaptation Models Application domains Input data Papers

Parameter adaptation GMM Gesture-based interaction Gesture and Françoise et al., 2016

movement data Sarasua et al., 2016

Human-robot interaction Robot arm Calinon et al., 2007

Calinon, 2016

One-shot HMM Gesture-based interaction Gesture and movement data Françoise and Bevilacqua, 2018

Incremental HMM Human-robot interaction 3D motion capture Kulić et al., 2008, 2012

Stylistic HMM Movement synthesis 3D motion capture Tilmanne et al., 2012

Particle filtering Gesture-based interaction Gesture and movement data Caramiaux et al., 2015

Transfer learning Temporal Health, rehabilitation Inertial sensors Rad and Furlanello, 2016

CNN Interactive movement Motion capture data Holden et al., 2016

generation

Movement analysis Videos and force measurements Zecha et al., 2018

2D CNN Gesture-based interaction Photo reflective data Kikui et al., 2018

Health & rehabilitation EMG data Côté-Allard et al., 2019

RNN Human-robot interaction Cheng et al., 2019

Human motion prediction Motion capture data Martinez et al., 2017

Recurrent Encoder-Decoder Human motion prediction Motion capture data Wang and Feng, 2019

Meta-learning CNN-LSTM Human-robot interaction Robot arm trajectory Duan et al., 2017

Raw pixels Finn et al., 2017b

Yu et al., 2018

Recurrent Encoder-Decoder Movement generation Motion capture data Gui et al., 2018

Planning adaptation IRL Human-robot interaction Joint dynamics Kolter et al., 2008

Finn et al., 2016

GAIL Human-robot interaction Joint Dynamics Ho and Ermon, 2016

Guo et al., 2018

Hausman et al., 2017

Raw pixels Zhu et al., 2018

VAE + GAIL Human-robot interaction Joint dynamics Wang Z. et al., 2017

2017; Martinez et al., 2017; Kratzer et al., 2019; Wang and Feng,
2019), and Temporal or Spatio-temporal Convolutional Neural
Networks (CNN) (Gehring et al., 2017; Li et al., 2018, 2019; Zecha
et al., 2018).

3.1. Transfer Learning
Transfer learning adapts a pre-trained model on a source domain
to new target tasks. Several strategies exist (Scott et al., 2018).
Transfer learning for movement modeling mainly relies on
embedding learning: movement features (or embeddings) are
learned from the source domain, providing well-shaped features
for the target domain.

Movement embeddings are learned from large movement
datasets. A first strategy involves one-dimensional convolutions
over the time domain (Holden et al., 2016; Rad and Furlanello,
2016). Rad and Furlanello (2016) propose that learning be
embedded using temporal convolution in order to improve
diagnostic classification of autism spectrum disorder from
inertial sensor data. The benefits of transfer learning are assessed
on two datasets collected from the same participants three
years apart. In another context, Holden et al. (2016) makes use
of transfer learning to synthesize movements from high-level
control parameters that are easily configurable by human-users.

Based on pre-trained movement embeddings from motion
capture data, a mapping between high-level parameters and
these embeddings can be efficiently learned according to the
user needs.

Spatio-temporal convolutions can also be used to extract
movement embeddings. Kikui et al. (2018) used this approach
for inter- and intra-user adaptation of a gesture recognition
system using photo reflective sensor data from a headset.
They showed that transfer learning improves accuracy when
the number of examples per class is low (lower than 6
ex/class). Also for classification, Côté-Allard et al. (2019)
showed that embedding learning systematically improved
the classification accuracy of EMG-based movement data;
in particular, they found that embedding learning using
CNNs on Continuous Wavelet Transform (CWT) gives the
best results.

Finally, RNN can also be used to learnmovement embeddings,
although this is not the most common approach. In the context
of human-robot interaction, Cheng et al. (2019) trained an RNN-
based movement model offline and then adapted the last layer
parameters through recursive least square errors. The goal is
to adapt the robot control command to human behavior in
real-time.
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In summary, transfer learning of movement features has been
proposed (1) to enable interactive movement generation or (2) to
improve classification performance. Several problems remain to
be addressed, especially in the context of motor learning. First, it
is unclear how the model architecture and the size of the training
set of the transfer task affect the approach. Second, the extent to
which successive transfers would provoke dramatic forgetting of
previously transferred tasks remains unexplored.

3.2. Meta-learning
Meta-learning designates the ability of a system to learn how to
learn by being trained on a set of tasks (rather than a single task),
such as learning faster (with fewer examples) on unseen tasks.
Meta-learning is close to transfer learning, but, while transfer
learning aims to use knowledge from a source application domain
in order to improve or accelerate learning in a target application
domain, meta-learning improves the learning procedure itself in
order to handle various application domains.

Meta-learning of movement skills has been proposed in
robotics and human-robot interaction to efficiently train robot
actions from one or a few demonstrations. Duan et al. (2017)
proposed a one-shot imitation learning algorithm where a
regressor is trained against the output actions to perform the
task, conditioned by a single demonstration sampled from a given
task. This approach is close to the regression-based technique
previously presented in section 2 but is formalized on a set
of tasks. For example, the task could be to train the robot-
arm to stack a variable number of physical blocks among a
variable number of piles. The evaluation methods rely on tests on
seen and unseen demonstrations during training. Their results
showed that the robot performed equally well with seen and
unseen demonstrations.

Adaptation through meta-learning in motor learning has
also been investigated with the model-agnostic meta-learning
(MAML) method (Finn et al., 2017a), which allows faster weight
adaptation to new examples representing a task. Finn et al.
(2017b) and Yu et al. (2018) extended the MAML approach
for one-shot imitation learning by a robotic arm. Finn et al.
(2017b) first demonstrated that vision-based policies can be fine-
tuned from one demonstration. They conducted experiments
using two types of tasks (pushing an object and placing an object
on a target) on both a simulated and a real robot using video-
based input data. Their results outperformed previous results
(see for instance Duan et al., 2017) in terms of the number
of demonstrations needed for adaptation. Yu et al. (2018) then
addressed the problem of one-shot learning of motor control
policies with domain shift. Their experiments on simulated and
real robot actions showed good results on tasks, such as pushing,
placing, and picking-and-placing objects.

The MAML method has also found applications in human
motion forecasting (Gui et al., 2018), for which large amounts
of annotated motion capture data are typically needed. They
propose an approach based on combining MAML and model
regression networks (Wang and Hebert, 2016; Wang Y.-X. et al.,
2017), allowing a good generic initial model to be learned and
enabling efficient adaptation to unseen tasks. They showed that

the model outperforms baselines with five examples of motion
capture data of walking.

4. ADAPTATION THROUGH
REINFORCEMENT LEARNING

Reinforcement Learning (RL) enables robotic agents to acquire
new motor skills from experience, using trial-and-error
interactions with their environment (Kober et al., 2013).
Contrary to the imitation learning approaches discussed in
section 2, where expert demonstrations are used to train a model
encoding a given behavior, RL relies on objective functions that
provide feedback on the robot’s performance.

Most approaches to imitation learning rely on a supervised
paradigm where the model is fully specified from demonstrations
without subsequent self-improvement (Billard et al., 2016). To
ensure good task generalization, imitation learning requires a
significant number of high-quality demonstrations that provide
variability while ensuring high performance. While RL can raise
impressive performance, the learning process is often very slow
and can lead to unnatural behavior. A growing body of research
investigates the combination of these two paradigms to improve
the models’ adaptation to new tasks, making the learning process
more efficient and improving the generalization of the tasks from
a few examples.

Demonstrations can be integrated in the RL process in various
ways. One approach consists of initializing RL training with
a model learned by imitation (Kober et al., 2013), typically
by a human teacher. Demonstrations of such tasks are used
to generate initial policies for the RL process, enabling robots
to rapidly learn to perform tasks, such as reaching, ball-in-a-
cup, playing pool, manipulating a box, etc. A second strategy
consists of deriving cost functions from demonstrations, for
instance using inverse reinforcement learning (Kolter et al., 2008;
Finn et al., 2016). Finn et al. (2016) showed that using 25–30
human demonstrations (by direct manipulation) to learn the cost
function was sufficient for the robot to learn how to perform dish
placement and pouring tasks.

Building upon the success of Generative Adversarial Networks
in other fields of machine learning, Generative Adversarial
Imitation Learning (GAIL) has been proposed as an efficient
method for learning movement from expert demonstrations (Ho
and Ermon, 2016). In GAIL, a discriminator is trained to
discriminate between expert trajectories (considered optimal)
and policy trajectories generated by a generator that is trained
to fool the discriminator. This approach was then extended to
reinforcement learning through self-imitation, where optimal
trajectories are defined by previous successful attempts (Guo
et al., 2018). Several extensions of the adversarial learning
framework were proposed to improve its stability or to handle
unstructured demonstrations (Hausman et al., 2017; Wang Z.
et al., 2017). These recent approaches have been evaluated
on a standard set of tasks using simulated environments,
in particular OpenAI Gym MuJoCo (Todorov et al., 2012),
including continuous control tasks, such as inverted pendulums,
4-legged walk, and humanoid walk.
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Recently, Zhu et al. (2018) proposed simultaneous imitation
and reinforcement learning through a reward function that
combines GAIL and RL. Zhu et al. (2018) evaluated their
approach on several manipulation tasks (such as lifting and
stacking blocks, clearing a table, and pouring) with a robot
arm. Demonstrations were performed using a 3D controller, the
training was done in a simulated environment, and the tasks were
performed by a real robot arm. In comparison with GAIL or RL
alone, the evaluation shows that the combination learns faster
and achieves better performance.

5. DISCUSSION

This paper reviews three types of adaptation in machine
learning applied to movement modeling. In this section, we
discuss how adaptive movement models can be used to support
motor learning, including both motor adaptation and motor
skill acquisition.

First, motor adaptation mechanisms involve variations of an
already-trained skill. Computationally, motor adaptation can be
seen as an optimization process that learns and cancels external
effects in order to return to baseline (Shadmehr and Mussa-
Ivaldi, 1994). Accounting for these underlying variations requires
rapid mechanisms and robust statistical modeling. Probabilistic
model parameter adaptation (section 2) appears to be a good
candidate for understanding the movement variability induced
bymotor adaptation processes. However, while motor adaptation
has been widely studied, very little is known on the statistical
structure of motor adaptation, particularly trial-to-trial motor
variability (Stergiou and Decker, 2011). Transfer learning could
also be used: pre-trained models (RNNs or CNNs) that capture
some structure of movement parameters (i.e., low-dimensional
subspaces of the parameter space), can be adapted online for
fine-grained variations. Here, open questions concern how such
variations can account for structural learning in motor control
(Braun et al., 2009).

Second, more dramatic changes in movement patterns,
as induced by learning new motor skills, might require
computational adaptation that involves re-training procedures.
Transfer and meta-learning (section 3) involve the adaptation
of high-capacity movement models to new tasks and could be
used in this context. One difficulty is to assess to what extent
transferring a given model to new motor control policies would

induce the model to forget past skills. For instance, it was found
that movement models relying on deep neural networks might
lead to catastrophic forgetting (Kirkpatrick et al., 2017). Also,
meta-learning algorithms, such as MAML (Finn et al., 2017a) are
currently not suitable for adaptation to several new motor tasks.
Self-imitation and reinforcement mechanisms (section 4) could
help to generalize to a wider set of tasks. A current challenge is
to learn suitable action selection policies. Although exploration-
exploitation is known to be central in motor learning (Herzfeld
and Shadmehr, 2014), it is yet unclear what process drives action
selection in the brain (Carland et al., 2019; Sugiyama et al., 2020).
These approaches still need to be experimentally assessed in a
motor learning context.

Finally, the last challenge that we want to raise in this paper
regards the continuous evolution of motor variation patterns.
Motor execution may vary continuously over time due to skill
acquisition and morphological changes. Accounting for such
open-ended tasks may require new forms of adaptation, such
as continuous online learning, as proposed by Nagabandi et al.
(2018). We think that this is a promising research direction,
raising the central question of computation and memory in
motor learning (Herzfeld et al., 2014).

In closing, to be integrated into motor learning support
systems, the aforementioned machine learning approaches
should be combined with adaptation mechanisms that aim to
generalize models to new movements and new tasks efficiently.
We do not advocate solely for adaptive machine learning
explaining motor learning processes. We propose adaptation
procedures that can account for variation patterns observed in
behavioral data, leading to performance improvements in motor
learning support systems.
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