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I Motivation

Because human-computer interaction studies
a human and a machine in , it draws from

supporting knowledge on both the machine and the human side.
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Whatever Happened to
Information Theory in Psychology? (Luce 2003)
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2) Information Theory

Source |———

Emitter

noise

—| Channel |/

Receiver

Background

A mathematical theory of communication (Shannon 1948)
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825 Information Theory I Background

Discrete random variable X: Information as entropy:
{X1,%0,..., %, } H(X)=-Y",Plog,P,

P, P, ... P, O0<H(X)<logN

H(X) =0 bits H(X) =1log, 10 = 3.3 bits 0<H(X)=2.7<3.3bits
10 - 1.0 10 -
0.8 08 - 8
06 06 - 6
04 - 04 - 4
02 0.2 2 . -
00 % X, X3 Xi X Xg X, Xg Xo X X X, X3 X Xs Xs X7 Xg Xo X Xy, X, X3 Xg Xo Xg X Xg Xo X

Not Just Pointing: Shannon’s Information Theory as a General Tool for Performance Evaluation of Input Techniques (Guiard 2018)
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025 Information Theory I Background

noise

l

Source |— | Emitter —| Channel |—— | Receiver |/ |Destination

Mathematics, statistics, computer science, physics, neurobiology, electrical engineering,
statistical inference, natural language processing, cryptography, neurobiology, human vision,
the evolution and function of molecular codes (bioinformatics), model selection in
statistics, thermal physics, quantum computing, linguistics, plagiarism detection, pattern

recognition, anomaly detection, gambling, music composition....
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https://en.wikipedia.org/wiki/Neurobiology
https://en.wikipedia.org/wiki/Information_theory

Experimental Psychology Applications I Background

Choice-reaction time (Hick, Hyman)

Information Capacity of Motor Movement (Fitts)

Information Capacity of Working Memory (Miller)

The Magical Number Seven, Plus or Minus Two (Miller 1956)
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> Choice-reaction time

Helmholtz
(1821-1894)
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Experimental Psychology Applications Background

> Choice-reaction time

Donders |868: Blank 1934: Hick 1952
First report of choice- A logarithmic relationship
reaction times is mentioned H)’man I 953
Merkel 1883: Shannon |948:
Relationship between time Information Theory
and the number of stimuli
(linear)
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Experimental Psychology Applications Backgr'ound

== Choice-reaction time (Hick, Hyman)

INFORMATION
s?ouaceo TRANSMITTER CHANNEL RECEIVER DESTINATION
| SPACE & VISUAL SYSTEM |
' |

» DISPLAY |4 > $ PARTICIPANT » RESPONSE
STIMULUS | SIGNAL RECEIVED , STIMULUS
i SIGNAL 1
NOISE
SOURCE

Information theory of choice-reaction times (Laming 1968)
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Experimental Psychology Applications I Backgr'ound

% Choice-reaction time (Hick, Hyman)

® ®
@@ o ©
' ® ®
PR e
Morse keys Pea lamps

T o< log,n

On the rate of gain of gain of information (Hick 1952)
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Experimental Psychology Applications

== Choice-reaction time (Hick, Hyman)

®®
chronoscope @
&6

(timer)
throat
microphone

participant

I o< Z?=1Pi10g2(1/l?i)

Stimulus information as a determinant of reaction time (Hyman 1953)
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Experimental Psychology Applications

= Choice-reaction time (Hick, Hyman, etc.)

Motivation

Hick Hyman Landauer & | Cockburn et al. Soukoreff & | Mackenzieetal.| Wobbrock &
Nachbar Mackenzie Myers
Task Reaction Reaction \'A) Decision VS VS VS
Stimuli Random Random Ordered Random Keyboard Keyboard Random
Participants Well-trained Well-trained All users | Users starting | Novice users | Novice users | All users
from block 2

® VS:Visual search.
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Motivation

Hick Hyman Landauer & | Cockburn et al. Soukoreff & | Mackenzieetal.| Wobbrock &
Nachbar Mackenzie Myers
Task Reaction Reaction VS Decision VS VS VS
Stimuli Random Random Ordered Random Keyboard Keyboard Random
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Experimental Psychology Applications Motivation

% Implications for HCI: Effect size of Hick’s law is insignificant

1500

—e— Glass
—a— Glass+Skin
= —»— Command Selection
(Vp]
£ 1000
()
£
|_
(e
ke
s 500
Q
o
0 1 | 1 |
0 2 4 6 8

Stimulus Uncertainty (bits) log, n

Wanyu Liu, Julien Gori, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
How Relevant is Hick’s Law for HCI? (CHI '19)
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Experimental Psychology Applications I Motivation

Hicl’’s law in design

¢ Hick's Law: Making the choice easier for users

Q Juggling Jam: Applying Hick’s Law to Web
Design

(&R Design principle: Hick's Law — quick
decision making

M Universal Principles of Design (i,
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% Hick’s law in design

Time taken to respond

Number of options

41



1948 M-y Experimental Psychology Applications

% Hick’s law in design

Shutdown DNTV Live! and PC.

Launch HDTV Mode. ——

Not in use

Not in Use

Simulate Alt + F4 Key.

Simulate Backspace Key.

Up, Left, Down and Right Arrows

simulate the Up, Left, Down and Right arrow keys
on the keyboard. The Enter/Ok button simulates
the Enterkey on the Keyboard.

Volume UP. If PinP (PIP) Preset key is activated
then will increase volume in PinP Window.

Volume Down. If PinP (PIP) Preset key is activated
then will decrease volume in PinP Window.

pR ding Mai dow TV.
If PinP (PIP) Preset key is activated then will record PinP Window TV

Play or Resume File Playback / Resume Timeshifted program.
Fast Rewinds by preset value.
Fast Forward by preset value.

Not in use

Swaps Audio Pids if more than one type of audio

Do not bombard users with choices

Return to the Main Menu from any mode. Close DNTV Live!.
Launch HDTW Mode or Show/Hide Channel Tree List.
Start playing the first available FM Radio Station in FM Station list.
This is only available if tuneris not in use for Digital TV.
Show EPG Info in HOTV Mode

~ Goto DVD Root Menu.
e Open File Dialog

Activate preset channel numbers.

If PinP (PIP) Preset key is activated

then will assign channel numbers to PinP.

If HDTV (Source) Preset key is activated

then will assign channel number to assigned HDTV channel.

If EPG (EPG) Preset key is activated

then will assign channel number to assigned EPG / Guide channel.

PinP Presetkey can also be used in conjunction with

HDTV and EPG Preset keys to activate HDTV and EPG channels in PinP.

~~ Simulate Delete Key.

Simulate Tab Key.

Channel Down / Previous Chapter.

Channel UP / Next Chapter.

Pause File Playback
Start Timeshifting and Pause.

Stop File Playback
Turn Off Timeshifting
(If not set in configuration to always be on).

Activates Action Replay when
in Timeshifting mode.

ens Webscheduler.

ivate / To, 0 assign

ilabl h |
is ona

Enables subtitles/Closed Captions, where available.
VMR must be used for subtities to work

Toggle Mute of audio in Main Window. (Any Mode)
If PinP (PIP) Preset key is activated then toggle mute in PinP.

Launch Analogue mode when in HDTV mode.

Toggle Control Panel within DNTV Live!.

Enter DVD Mode.

Start FM Radio
Enter Music Mode.

t Ch 1s for use with PinP.
reen and window modes.
Silent Record Main window.
Hibernate your PC.

Show Zoom Bar.

a

Hide Zoom Bar.

Show 0SD
Notin Use

Exit any hode
Execute File Open Dialog.

42
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% Hick’s law in design

Always categorize choices

43



Experimental Psychology Applications I Motivation

% Implications for HCI: Hick’s law does not justify design “rules”

N=512

RT =a+blog,(512) =a+9xb

Wanyu Liu, Julien Gori, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
How Relevant is Hick’s Law for HCI? (CHI '19)
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Experimental Psychology Applications I Motivation

== Implications for HCI: Hick’s law does not justify design “rules”

N=512

4
RT=1/4(> ai+bilog,(128)) = 10/4 a+70/4 b
=1

Wanyu Liu, Julien Gori, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
How Relevant is Hick’s Law for HCI? (CHI '19)
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Experimental Psychology Applications I Motivation

Implications for HCI: Hick’s law does not justify design “rules”

N=512

RT =a+blog,(4) +a+blog,(128) =2a+9 xb

Wanyu Liu, Julien Gori, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
How Relevant is Hick’s Law for HCI? (CHI '19)
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% Implications for HCI: Hick’s law does not justify design “rules”

N=512

RT =a+blog,(512) =a+9xb

Wanyu Liu, Julien Gori, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
How Relevant is Hick’s Law for HCI? (CHI '19)
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1948 1950 2017 I Motivation

Because human-computer interaction studies
a human and a machine in , it draws from

supporting knowledge on both the machine and the human side.

GB — = |

User Computer
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User Computer

Part ii: Bayesian Information Gain (BIG)
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User Computer
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Input

Feedback = — =
User Computer

To look for a restaurant
To type a word

To draw a gesture

To select an icon

To do something
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User

Bayesian Information Gain

Input

Feedback

52

I BIG

Computer

® Uncertainty about this something

® Uncertainty reduces gradually
when receiving user input
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6

Intended
target

® Prior knowledge: P(® = 0)

C —

Computer

Feedback X = x /

User
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Experiment Observation

The Scientist

On a Measure of the Information Provided by an Experiment (Lindley 1956)
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Experiment Observation

X1 \ Y1

The computer

N k=)
9

On a Measure of the Information Provided by an Experiment (Lindley 1956)
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1948 1950 Z/d¥) Bayesian Information Gain I BIG

® Executes the user input only Multiscale navigation
® Maximizes the expected information gain IG(®|X :x,Y) BIGnav

® Leverages the expected information gain B|GFile

6

Intended
target

Input Y =y

® Prior knowledge: P(® = 0)
® User behavior model: P(Y =y|®=6,X =x)
® Update knowledge: P(@ =0 | X =x,Y =y) - ==

® Calculate Information Gain: /G(®|X =x,Y =)

Feedback X = x /

User Computer

56
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Bayesian Information Gain I BiGnav

% The computer’s about the user’s goal

H(O®) = —iP(@ = 6;)log, P(® = 6;)
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OOO

User Input Y =y

>
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Bayesian Information Gain I BiGnav

.n P(Y=y|®=06,X =x)

P(O® =6)
View X =x User Input Y =y

65
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.nl P(®=0|X=x,Y=y)

| P(®=6)
View X = x User Input Y =y
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Bayesian Information Gain I BiGnav

The computer’s about the user’s goal

H(O®) = —iP(@ =0;)1log, P(® = 6;)

The computer’s about the user’s goal

P(Y=y|©®=6,X=x)P(®=0)

P(®=0|X=x,Y=y)= PY =YX =x)

69



1948 1950 20 Bayesian Information Gain I BiGnav

*i= A calibration session to understand user behavior P(Y = y|® = 6,X = x)
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Bayesian Information Gain

Main Region

Adjacent Regions  Other Regions

90%
95%
100%

8% 2%
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0 0

BiGnav
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Bayesian Information Gain I BiGnav

The computer’s about the user’s goal

H(O®) = —iP(@ =0;)1log, P(® = 6;)

The computer’s about the user’s goal

P(Y=y|©®=6,X=x)P(®=0)

P(®=0|X=x,Y=y)= PY =YX =x)

The in the user’s input for reducing the computer’s uncertainty

IGOX=x,Y=y)=H(®)-H(B|X =x,Y =y)

72



1948 1950 20 Bayesian Information Gain I BiGnav

Executes the user input only Multiscale navigation

“i= Each user input does not provide much information for the computer to know her goal

— Uncertainty

- |nformation Gain

0 | -
0 10 20 30

Number of Commands

73



Bayesian Information Gain I BiGnav

Can we challenge users
to give ?

74



Bayesian Information Gain I BiGnav

The scientist optimizes
the choice of the experiment
by maximizing the expected utility

On a Measure of the Information Provided by an Experiment (Lindley 1956)
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1948 1950 20 Bayesian Information Gain BiGnav

User Input Y =y

>

<

View X =x . — =

The expected information gain

@/ Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul.
XL BIGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).
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1948 1950 20 Bayesian Information Gain BiGnav

User Input Y =y

>

<

View X =x - — =

Choose the feedback (a view) that
maximizes the expected
information gain from the user’s
subsequent input

| ) Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul.
XL BlGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).
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1948 1950 20 Bayesian Information Gain BiGnav

OOO

User Input Y =y

>

<

View X =x - — =

Go over all possible feedback,
and find the one that maximizes
the expected information gain

IG®X =x,Y)=H(®)-H(O|X =x.,Y)

| ) Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul.
XL BlGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).
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gains maximum information from each user input

4 e
— Uncertainty
3 B S
- |Information Gain
£ 2
£
0 MIII%ITIITI

0 10 20 30

Number of Commands
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gains maximum information from each user input

4 4
2 — Uncertainty — Uncertainty
- R s 3
- |nformation Gain - |Information Gain
g 2 . 5 2
1 - 1
o m | | || P11 | I | Tﬁ_ll | B o
0 10 20 30 0 10 20 30
Number of Commands Number of Commands
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1948 1950 20 Bayesian Information Gain I BiGnav

gains maximum information from each user input

4 - 4 -
2 — Uncertainty — Uncertainty
- e 3_.
- |nformation Gain - |[nformation Gain
g 2 . N 5 2 |
1 - 1 -
0‘ J | 20 B i B e e e e e e e e e o T T 1
0 10 20 30 1 2 3 4
Number of Commands Number of Commands
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A map application - “3 steps to go to Paris’.

Europe map featuring large cities with their population as distribution.




-
o

A map application - “Navigate to Helsinki”.

Europe map featuring large cities with their population as distribution.




Bayesian Information Gain I BiGnav

Full factorial within-participant design:

|6 Participant
X
x 5 Index of Difficulty x 6 Distribution

x 5 Replication

Technique: BlGnav, STDnav

Index of Difficulty: 10, 15, 20, 25, 30
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% The further the target is located, the better /G nav performs

10 15 20 25 30
ID Level
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Trajectory in multiscale worlds.
Though being more efficient, incurs a higher cognitive load

H
o

—STDnav

W
o

Index of Difficulty
= ]

o
L
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Bayesian Information Gain I BiGnav

‘¥ Experiment Summary

is up to 40% faster than STDnav
Half of the participants preferred for being efficient and interactive

The other half favored STDnav for being comfortable and intuitive
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Leverages the expected information gain IG(®|X =x,Y)

Prior knowledge

O P(®=0)
User Input Y =y ot > e
S =
< rrampor
View X =x N -
User Computer

Wanyu Liu, Olivier Rioul, Joanna McGrenere,Wendy Mackay, and Michel Beaudouin-Lafon.
l\ BIGFile: Bayesian Information Gain for Fast File Retrieval. (CHI 'I8).
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1950 2017

Back

Ccv

eBooks
Finances
House
Micellaneous
Papers
Programming
Spreadsheets
Thesis
Writing

Bayesian Information Gain

BIGFile

Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm

BIGFile
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=/

Back

Geography > Islands >

Food > Dairy > Cheese

History > Inventions

Education > Curriculum >

Geography
Animals
Computing
Food
Transport
Health
Entertainment
History
Plants
People
House & Home
Education
Budget
Essay
Paper
Article
Fireman
Building
Watch

Plan
Footstep
Camera
Cardboard
Photo

Tropical >

Masters >

Bayesian Information Gain

Touristic >

German

BIGFile

Large >

Hawaii

Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm
Apr 5, 2017, 2:02pm

BIGFile
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*%  [3 x 2] within-participant design:

|8 Participant
X

x 2 Target Level

*% Interface: M BIGFile [ ARFile [ Finder

* Target Level: 3, 6

AccessRank: predicting what users will do next (Fitchett & Cockburn 2012)
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sk BIGFile saves time to retrieve a file

W
o

" BIGFile
~ ARFile
" Finder

—_ - NN
o O O O

(&)

Task Completion Time (s)

o

Level 3 Level 6

® Only data from the second session is shown here.
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% Both BIGFEile and ARFile are preferred by participants

7 . BIGFile [ ARFile [ Finder
6

5

4

3

2

1

0 Mental Physical Temporal

Demand Demand Demand Performance Effort Frustration

® NASATLX scores: lower is better.
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‘¥ Experiment Summary

is up to 44% faster than ARFile and 64% faster than Finder
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‘¥ Experiment Summary

Both BIGFile and ARFile are preferred by participants

" BIGFile | ARFile [ Finder

Overall
Preference

® Overall preference: higher is better.
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1948 1950 Z/d¥) Bayesian Information Gain I BIG

® Executes the user input only Multiscale navigation
® Maximizes the expected information gain IG(®|X :x,Y) BIGnav

® Leverages the expected information gain B|GFile

6

Intended
target

Input Y =y

® Prior knowledge: P(® = 0)
® User behavior model: P(Y =y|®=6,X =x)
® Update knowledge: P(@ =0 | X =x,Y =y) - ==

® Calculate Information Gain: /G(®|X =x,Y =)

Feedback X = x /

User Computer

99
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User Computer
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: Speed-accuracy tradeoff

101
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Solution: Control errors
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Solution: Control errors

Control error rate under 4 %, such as pointing, text entry, etc.

103
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Solution: Control errors
Control error rate under 4 %, such as pointing, text entry, etc.

Remove errors from data analysis.

| 04
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S _
N _ A.
O Alphabetic 5
B Semantic
Unordered -
LQ - W..
A Z..
A..
- B..
L o c.
()] — .
c - .
i: P..
W..
Z..
0 _
(- D..
B..
A..
W..
C..
o Z..
d — E..

8-items 12-items 16-items
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¢ The treatment of errors
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Error rate:2/8 =25 %
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vy

4

Error rate:2/8 =25 %
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Because human-computer interaction studies
a human and a machine in , it draws from

supporting knowledge on both the machine and the human side.

@ —_— —

User Computer
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User Computer

Part iii: Information-theoretic Measures
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User Computer

113
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b — =

User Computer

X :A set of all possible messages that a user can transmit,
representing the intended inputs.

X takes valuesin 1 2 3 4

X1 X2 X3 X4

| 14
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User Computer

P(X):The probability distribution of the intended inputs.

X takes valuesin 1 2 3 4

p(x1) p(x2) p(x3) p(x4)

I'15
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User Computer

Input entropy: How much information could be transmitted.

Corresponding to and the

116
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User Computer

Y :The actual input received by the computer.

117
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User Computer

Y :The actual input received by the computer.

H(X):Zbits

|18
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User Computer

I(X;Y):Mutual information between the intended input and the actual input.

It describes how much information actually gets transmitted.

I(X;Y)=H(X)-H(X[Y)

119
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User Computer

I(X;Y):Mutual information between the intended input and the actual input.

It describes how much information actually gets transmitted.

120
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User Computer

I(X;Y):Mutual information between the intended input and the actual input.

It describes how much information actually gets transmitted.

I(X;Y) = 1.5 bits

121
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X Y
User Computer
[(X;Y) L . - .
TP= - : Throughput describes information transmission efficiency.
1 2 3 4
@

TP=I1(X;Y)/T =1.5/1.5=1bit/s
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X Y
User Computer
[(X;Y) L . - .
TP= - : Throughput describes information transmission efficiency.
1 2 3 4
@

TP=1(X;Y)/T=H(X)/T=2/1.5=1.3 bit/s
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Standard language to describe interaction

124
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Standard language to describe interaction

H(X): how much information could be transmitted.
1(X;Y): how much information actually gets transmitted.
H(X|Y): how much information gets lost, related to how users make errors.

TP: information transmission efficiency.
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More consistent measure

126
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More consistent measure

H(X)

Time
Input size
Distribution

Error rate
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More consistent measure

H(X) | I0GY)

Time
Input size
Distribution

Error rate
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More consistent measure

H(X) | I0GY) | HX]Y)

Time
Input size
Distribution

Error rate
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More consistent measure

H(X) | I(X;Y) | HIX]Y) | TPy

Time
Input size
Distribution

Error rate
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More consistent measure

HX) | 10GY) | HXY) | TPy § TPy,

Time
Input size
Distribution

Error rate

TP, = ID/MT
MT =a+bxID

Fitts’ throughput and the speed-accuracy tradeoff (Mackenzie 2008)
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More consistent measure

HX) | IGY) | HXY) | TP § TPy, | TP,

Time
Input size

Distribution

Error rate

TP,=1/b
MT =a+bxID

Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT (Card 1978)
Characterizing computer input with Fitts’ law parameters - the information and non-information aspects of pointing (Zhai 2004)
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More consistent measure

HX) | I0GY) | HXY) | TP § TP, | TP,

Time /

Input size

Distribution

Error rate
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More consistent measure

HX) | I0GY) | HXY) | TP § TP, | TP,

Time ya — — _

Input size

Distribution

Error rate

| 34
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More consistent measure

HX) | I0GY) | HXY) | TP § TP, | TP,
Time s — — — N\ /‘ _

Input size

Distribution

Error rate
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More consistent measure

HX) | I0GY) | HXY) | TP § TP, | TP,
Time — — = Ny s -
Input size s ya — ya ya -
Distribution N\ N — N — —
Error rate — Ny a ¢ N o
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Speed-accuracy tradeoff

137



1948 1950 2017 J0E)  Information-Theoretic Measures Measures

Speed-accuracy tradeoff

o _
N . 4.0
o Alphabetic [ Alphabetic
B Semantic i .
Unordered 35 Bl Semantic
v _ [Z—1 Unordered
= 3.0 A
Q
@ :‘(2’3 2.5 -
(()) o 4
E - 3 2.0 -
" S
o 1.5
e
Vo) —
o 1.0 A
0.5 A+
o /
o 0.0 /)
8-items 12-items  16-items Length 8 Length 12 Length 16

Menu Length
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Equivocation provides information about

how users make errors
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X The “noise” Z Y

User Computer

The error random variable:

0 ifX =Y:
1 if X # Y.

The error rate:

P.=P(X £Y)

140
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X The “noise” Z Y D

User Computer

The error rate P, has binary entropy:

H(E) = —P.logy P, — (1 — P,)logy(1 — P.)
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X The “noise” Z Y

User Computer

I(X;Y)=H(X) - H(X|Y)

H(X|Y) < H(E)+ P, x H(Z|E = 1)

[Theorem 2.10.1] Elements of information theory. Cover,T. M., & Thomas, J.A. (2012).
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X The “noise” Z Y D

User Computer

I(X;Y)=H(X) - H(X|Y)

H(X|Y) < H(E) + P. x H(Z|E = 1)

The fact that users make errors.At most | bit.
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X The “noise” Z Y E

User Computer

I(X;Y)=H(X) - H(X|Y)

H(X|Y) < H(E) + P. x H(Z|E = 1)

How they make errors.

|44
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i1k  Information-Theoretic Measures

Error rate:2/8 =25 %

|45

I Measures

H(X|Y) = 0.5 bits
TP=I1(X;Y)/T
=1.5/1.5=1bit/s

H(X|Y) = 0.7 bits
TP=I1(X;Y)/T
=1.3/1.5=0.8 bit / s
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User Computer

Information-theoretic Measures

Wanyu Liu, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.

Information-Theoretic Analysis of Human Performance for Command Selection. (INTERACT '17).
Wanyu Liu,Antti Oulasvirta, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
Information-theoretic Measures for Characterizing Interaction (TOCHI '19)

|46



Contribution

2 Information Theory

YE) Experimental Psychology Applications

® Hick’'slaw (1952) @
Part i
Fitts’ law (19549 Q

@ Bayesian Information Gain

User input Y

>

\
\

. <
\ﬁ/
System feedback _X

® BIGnav (2017)

Part ii S
©® BIGFile 015 A
AT Intended input X Received input Y
noise
@ Information-Theoretic Measures A l
Copy " . )
® Command Selection Za:fs G — -
Share
Part iii e
® Text Entry /11
A
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% Other “BIG” applications

Bayesian Information Gain for Guiding Design Exploration
(in collaboration with Luana Micallef, University of Copenhagen)

BlGnote: Bayesian Information Gain for Collaborative Music Composition
(came up with the idea during lucid dreaming)

|48
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% Other “BIG” applications

> Refine “BIG” framework

Model real user behavior P(Y = y|® = 6,X = x)
User independent

Machine learning

Shared control

Maximize other utility function

| 49
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Other “BIG” applications
Refine “BIG” framework

Information-theoretic measures for other interaction tasks

Continuous input
Taking advantage of equivocation

150



% Main publications

7 Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul.
BIGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).

Wanyu Liu, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
Information-Theoretic Analysis of Human Performance for Command Selection. INTERACT '17).

Wanyu Liu, Olivier Rioul, Joanna McGrenere,Wendy Mackay, and Michel Beaudouin-Lafon.
I BIGFile: Bayesian Information Gain for Fast File Retrieval. (CHI '18).
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Thank you everyone!

Merci a tous!
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i Prediction algorithm: AccessRank
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AccessRank: predicting what users will do next (Fitchett & Cockburn 2012)
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i Prediction algorithm: AccessRank

1
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A Markov chain model

AccessRank: predicting what users will do next (Fitchett & Cockburn 2012)
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i Prediction algorithm: AccessRank

1
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v

A combined recency and frequency model

AccessRank: predicting what users will do next (Fitchett & Cockburn 2012)
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i Prediction algorithm: AccessRank

1
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A time weighting model

AccessRank: predicting what users will do next (Fitchett & Cockburn 2012)



