Information Theory as a Unified Tool for Understanding and Designing Human-Computer Interaction

Committee:

#Bayesian #ComputationalInteraction #CoAdaptation

erc

PARIS CICCO UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ UNIVERSITÉ

#MutualInformation

ex)situ

#HumanComputerInteraction

Because human-computer interaction studies

a human

Because human-computer interaction studies

a human

Because human-computer interaction studies a human and a machine

Because human-computer interaction studies a human and a machine

Computer

Because human-computer interaction studies a human and a machine in communication,

Computer

Because human-computer interaction studies a human and a machine in communication,

Because human-computer interaction studies a human and a machine in **communication**, it draws from supporting knowledge on both the machine and the human side.

A mathematical theory of communication (Shannon 1948)

Discrete random variable X:

$$\{x_1, x_2, \dots, x_n\}$$

$$P_1 P_2 \dots P_n$$

Discrete random variable X:

$$\{x_1, x_2, \dots, x_n\}$$

$$P_1 P_2 \dots P_n$$

Discrete random variable X:

$$\begin{cases} x_1, x_2, \dots, x_n \\ \bullet & \bullet \\ P_1 & P_2 & \dots & P_n \end{cases}$$

Information as entropy: $H(X) = -\sum_{i=1}^{n} P_i \log_2 P_i$ $0 \le H(X) \le \log N$

Discrete random variable X:

$$\begin{cases} x_1, x_2, \dots, x_n \\ \bullet & \bullet \\ P_1 & P_2 & \dots & P_n \end{cases}$$

Information as entropy: $H(X) = -\sum_{i=1}^{n} P_i \log_2 P_i$ $0 \le H(X) \le \log N$

Information as entropy:

$$H(X) = -\sum_{i=1}^{n} P_i \log_2 P_i$$

 $0 \le H(X) \le \log N$

Not Just Pointing: Shannon's Information Theory as a General Tool for Performance Evaluation of Input Techniques (Guiard 2018)

Mathematics, statistics, computer science, physics, neurobiology, electrical engineering, statistical inference, natural language processing, cryptography, neurobiology, human vision, the evolution and function of molecular codes (bioinformatics), model selection in statistics, thermal physics, quantum computing, linguistics, plagiarism detection, pattern recognition, anomaly detection, gambling, music composition....

Source: https://en.wikipedia.org/wiki/Information_theory

- Information Capacity of Motor Movement (Fitts)
- Information Capacity of Working Memory (Miller)

The Magical Number Seven, Plus or Minus Two (Miller 1956)

Background

Choice-reaction time

Helmholtz (1821-1894)

* Choice-reaction time

Donders 1868:

First report of choicereaction times Blank 1934: A logarithmic relationship is mentioned Hick 1952 Hyman 1953

Merkel 1883:

Relationship between time and the number of stimuli (linear)

Shannon 1948: Information Theory

Choice-reaction time (Hick, Hyman)

Information theory of choice-reaction times (Laming 1968)

Morse keys

Pea lamps

On the rate of gain of gain of information (Hick 1952)

Choice-reaction time (Hick, Hyman)

Stimulus information as a determinant of reaction time (Hyman 1953)

Choice-reaction time (Hick, Hyman, etc.)

	Hick	Hyman	Landauer &	Cockburn et al.	Soukoreff &	Mackenzie et al.	Wobbrock &
			Nachbar		Mackenzie		Myers
Task	Reaction	Reaction	VS	Decision	VS	VS	VS
Stimuli	Random	Random	Ordered	Random	Keyboard	Keyboard	Random
Participants	Well-trained	Well-trained	All users	Users starting	Novice users	Novice users	All users
			Į I	from block 2			
	Uniform	Non-uniform	Uniform		Uniform	Uniform	

• VS:Visual search.

Choice-reaction time (Hick, Hyman, etc.)

	Hick	Hyman	Landauer &	Cockburn et al.	Soukoreff &	Mackenzie et al.	Wobbrock &
			Nachbar		Mackenzie		Myers
Task	Reaction	Reaction	VS	Decision	VS	VS	VS
Stimuli	Random	Random	Ordered	Random	Keyboard	Keyboard	Random
Participants	Well-trained	Well-trained	All users	Users starting	Novice users	Novice users	All users
				from block 2			
	Uniform	Non-uniform	Uniform	Zipfian	Uniform	Uniform	

• VS:Visual search.

Implications for HCI: Effect size of Hick's law is insignificant

Hick's law in design

Hick's Law: Making the choice easier for users

- Juggling Jam: Applying Hick's Law to Web Design
- Design principle: Hick's Law quick decision making
- Universal Principles of Design (Lidwell 2010)

Hick's law in design

Number of options

Hick's law in design

Do not bombard users with choices

Hick's law in design

Always categorize choices

Implications for HCI: Hick's law does not justify design "rules"

$$RT = a + b \log_2(512) = a + 9 \times b$$

Implications for HCI: Hick's law does not justify design "rules"

N = 512

$$RT = 1/4 \left(\sum_{i=1}^{4} a \ i + b \ i \ \log_2(128) \right) = 10/4 \ a + 70/4 \ b$$

Implications for HCI: Hick's law does not justify design "rules"

N = 512

 $RT = a + b \log_2(4) + a + b \log_2(128) = 2a + 9 \times b$

Implications for HCI: Hick's law does not justify design "rules"

 $RT = a + b \log_2(512) = a + 9 \times b$

Because human-computer interaction studies a human and a machine in **communication**, it draws from supporting knowledge on both the machine and the human side.

ACM SIGCHI Curriculum for human-computer interaction (2009)

Part ii: Bayesian Information Gain (BIG)

Computer

50

BIG

- To look for a restaurant
- To type a word
- To draw a gesture
- To select an icon
- To do something
-

1

• Uncertainty about this something

BIG

• Uncertainty reduces gradually when receiving user input

BIG

Experiment

θ

The Scientist

x3

Observation

On a Measure of the Information Provided by an Experiment (Lindley 1956)

Experiment

θ

The computer

On a Measure of the Information Provided by an Experiment (Lindley 1956)

95(

- Executes the user input only Multiscale navigation
- Maximizes the expected information gain $IG(\Theta|X = x, Y)$ BIGnav
- Leverages the expected information gain **BIGFile**

2017 Bayesian Information Gain

1950

94

$$P(\Theta = \theta_i)$$

Bayesian Information Gain

* The computer's Uncertainty about the user's goal

$$H(\Theta) = -\sum_{i=1}^{n} P(\Theta = \theta_i) \log_2 P(\Theta = \theta_i)$$

Bayesian Information Gain

Bayesian Information Gain

View X = x

$$P(Y = y | \Theta = \theta, X = x)$$

$$P(\Theta = \theta_i)$$

User Input $Y = y$

Bayesian Information Gain

View X = x

$$P(\Theta = \theta | X = x, Y = y)$$

$$P(\Theta = \theta_i)$$

User Input $Y = y$

Bayesian Information Gain

* The computer's Uncertainty about the user's goal

$$H(\Theta) = -\sum_{i=1}^{n} P(\Theta = \theta_i) \log_2 P(\Theta = \theta_i)$$

BIGnav

* The computer's updated knowledge about the user's goal

$$P(\Theta = \theta | X = x, Y = y) = \frac{P(Y = y | \Theta = \theta, X = x)P(\Theta = \theta)}{P(Y = y | X = x)}$$

BIGnav

* A calibration session to understand user behavior $P(Y = y | \Theta = \theta, X = x)$

BIGnav

	R	esults	
Command	Main Region	Adjacent Regions	Other Regions
Pan	90%	8%	2%
Zoom	95%	1.25%	3.75%
Click	100%	0	0

71

* The computer's Uncertainty about the user's goal

$$H(\Theta) = -\sum_{i=1}^{n} P(\Theta = \theta_i) \log_2 P(\Theta = \theta_i)$$

BIGnav

* The computer's updated knowledge about the user's goal

$$P(\Theta = \theta | X = x, Y = y) = \frac{P(Y = y | \Theta = \theta, X = x)P(\Theta = \theta)}{P(Y = y | X = x)}$$

* The information in the user's input for reducing the computer's uncertainty

$$IG(\Theta|X=x,Y=y) = H(\Theta) - H(\Theta|X=x,Y=y)$$

* Each user input does not provide much information for the computer to know her goal

Can we challenge users to give more information?

Experiment

Observation

BIGnav

The scientist optimizes the choice of the experiment by maximizing the expected utility

The Scientist

On a Measure of the Information Provided by an Experiment (Lindley 1956)

The expected information gain

Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul. BIGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).

Choose the feedback (a view) that maximizes the expected information gain from the user's subsequent input

Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul. BIGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).

Go over all possible feedback, and find the one that maximizes the expected information gain $IG(\Theta|X = x, Y) = H(\Theta) - H(\Theta|X = x, Y)$

Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul. BIGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).

1950

BIGnav gains maximum information from each user input

BIGnav gains maximum information from each user input

BIGnav gains maximum information from each user input

A map application - "3 steps to go to Paris".

Europe map featuring large cities with their population as distribution.

A map application - "Navigate to Helsinki".

Europe map featuring large cities with their population as distribution.

Full factorial within-participant design:

16 Participant

BIGnav

x 2 Navigation Technique

x 5 Index of Difficulty x 6 Distribution

x 5 Replication

* Technique: BIGnav, STDnav

Index of Difficulty: 10, 15, 20, 25, 30

The further the target is located, the better **BIGnav** performs

Trajectory in multiscale worlds.
Though being more efficient, BIGnav incurs a higher cognitive load

BIGnav

88

Experiment Summary

BIGnav is up to 40% faster than STDnav

Half of the participants preferred **BIGnav** for being efficient and interactive

The other half favored STDnav for being comfortable and intuitive

* Leverages the expected information gain $IG(\Theta|X = x, Y)$

BIGFile

Wanyu Liu, Olivier Rioul, Joanna McGrenere, Wendy Mackay, and Michel Beaudouin-Lafon. BIGFile: Bayesian Information Gain for Fast File Retrieval. (CHI '18).

	BIGFile					
Back						
CV	Apr 5, 2017, 2:02pm					
eBooks	Apr 5, 2017, 2:02pm					
Finances	Apr 5, 2017, 2:02pm					
E House	Apr 5, 2017, 2:02pm					
Micellaneous	Apr 5, 2017, 2:02pm					
Papers Papers	Apr 5, 2017, 2:02pm					
Programming	Apr 5, 2017, 2:02pm					
Spreadsheets	Apr 5, 2017, 2:02pm					
Thesis	Apr 5, 2017, 2:02pm					
Writing	Apr 5, 2017, 2:02pm					

BIGE	File
------	------

	• •	BIGFile	
<			
Bac	-k		
	Geography > 📄 Islands > 📄 Tropical > 📄 Touristic >	🛛 📄 Large > 📄 Hawaii	
	Food > 📄 Dairy > 📄 Cheese		
	History > 📃 Inventions		Estimated shortcuts
	Education > Curriculum > Masters > German		
	Geography	Apr 5, 2017, 2:02pm	
	Animals	Apr 5, 2017, 2:02pm	
	Computing	Apr 5, 2017, 2:02pm	
	Food	Apr 5, 2017, 2:02pm	
	Transport	Apr 5, 2017, 2:02pm	
	Health	Apr 5, 2017, 2:02pm	
	Entertainment	Apr 5, 2017, 2:02pm	The usual hierarchy
	History	Apr 5, 2017, 2:02pm	
	Plants	Apr 5, 2017, 2:02pm	
	People	Apr 5, 2017, 2:02pm	
	House & Home	Apr 5, 2017, 2:02pm	
	Education	Apr 5, 2017, 2:02pm	
	Budget	Apr 5, 2017, 2:02pm	60k
	Essay	Apr 5, 2017, 2:02pm	60k
-	Paper	Apr 5, 2017, 2:02pm	60k
	Article	Apr 5, 2017, 2:02pm	60k
	Fireman	Apr 5, 2017, 2:02pm	60k
	Building	Apr 5, 2017, 2:02pm	60k
	Watch	Apr 5, 2017, 2:02pm	60k
	Plan	Apr 5, 2017, 2:02pm	60k
	Footstep	Apr 5, 2017, 2:02pm	60k
	Camera	Apr 5, 2017, 2:02pm	60k
-	Cardboard	Apr 5, 2017, 2:02pm	60k
	Photo	Apr 5, 2017, 2:02pm	60k
-	Brick	Apr 5, 2017, 2:02pm	60k

Health	Apr 5, 2017, 2:02pm					
Entertainment Having (direct access to the target					
History	Apr 5, 2017, 2:02pm					

AccessRank: predicting what users will do next (Fitchett & Cockburn 2012)

BIGFile

BIGFile

BIGFile saves time to retrieve a file

[•] Only data from the second session is shown here.

Both BIGFile and ARFile are preferred by participants

BIGFile

• NASATLX scores: lower is better.

Experiment Summary

BIGFile is up to 44% faster than ARFile and 64% faster than Finder

BIGFile

Experiment Summary

Both **BIGFile** and **ARFile** are preferred by participants

• Overall preference: higher is better.

95(

- Executes the user input only Multiscale navigation
- Maximizes the expected information gain $IG(\Theta|X = x, Y)$ BIGnav
- Leverages the expected information gain **BIGFile**

Interface

Time, errors

->

User

Computer

Drawback I: Speed-accuracy tradeoff

Solution: Control errors

Solution: Control errors

Control error rate under 4 %, such as pointing, text entry, etc.

Solution: Control errors

Control error rate under 4 %, such as pointing, text entry, etc.

Remove errors from data analysis.

Semantic

Model of visual search and selection time in linear menus. (Bailly 2014)

105

Drawback 2: The treatment of errors

1	2	3	4

107

Error rate: 2 / 8 = 25 %

Error rate: 2 / 8 = 25 %

Error rate: 2 / 8 = 25 %

Because human-computer interaction studies a human and a machine in **communication**, it draws from supporting knowledge on both the machine and the human side.

ACM SIGCHI Curriculum for human-computer interaction (2009)

User

Computer

Part iii: Information-theoretic Measures

User

Computer

X:A set of all possible messages that a user can transmit, representing the intended inputs.

X takes values in
 I
 2
 3
 4

$$x_1$$
 x_2
 x_3
 x_4

P(X): The probability distribution of the intended inputs.

 X takes values in
 I
 2
 3
 4

 $p(x_1) p(x_2) p(x_3) p(x_4)$

Input entropy: How much information could be transmitted. Corresponding to input size and the probability distribution.

$$H(X) = -\sum_{i=1}^{n} P_i \log_2 P_i$$

Y:The actual input received by the computer.

Y: The actual input received by the computer.

I(X;Y): Mutual information between the intended input and the actual input. It describes how much information actually gets transmitted.

I(X;Y) = H(X) - H(X|Y)

I(X;Y): Mutual information between the intended input and the actual input. It describes how much information actually gets transmitted.

$$I \quad 2 \quad 3 \quad 4$$

$$I \quad I \quad 2 \quad 2 \quad 3 \quad 3 \quad 3 \quad 3$$

$$I(X;Y) = \sum_{x} \sum_{y} P(X = x, Y = y) \log_2 \frac{P(X = x, Y = y)}{P(X = x)P(Y = y)}$$

I(X;Y): Mutual information between the intended input and the actual input. It describes how much information actually gets transmitted.

$$I = 2 = 3 = 4$$

$$I = 1 = 2 = 2 = 3 = 3 = 3 = 3$$

$$I(X;Y) = 1.5 \text{ bits}$$

TP = I(X;Y)/T = 1.5/1.5 = 1 bit / s

TP = I(X;Y)/T = H(X)/T = 2/1.5 = 1.3 bit / s

Advantage I:

Standard language to describe interaction

Standard language to describe interaction

H(X): how much information could be transmitted.

I(X;Y): how much information actually gets transmitted.

H(X|Y): how much information gets lost, related to how users make errors.

TP: information transmission efficiency.

Advantage 2:

	H(X)	I(X; Y)	H(X Y)
Time			
Input size			
Distribution			
Error rate			

	H(X)	I(X; Y)	H(X Y)	TΡ _i
Time				
Input size				
Distribution				
Error rate				

Advantage 2:

More consistent measure

	H(X)	I(X ; Y)	H(X Y)	TPi	TPm
Time					
Input size					
Distribution					
Error rate					

 $TP_m = ID/MT$

 $MT = a + b \times ID$

Fitts' throughput and the speed-accuracy tradeoff (Mackenzie 2008)

Advantage 2:

More consistent measure

 $TP_z = 1/b$

 $MT = a + b \times ID$

Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT (Card 1978) Characterizing computer input with Fitts' law parameters - the information and non-information aspects of pointing (Zhai 2004)

Advantage 2:

	H(X)	I(X; Y)	H(X Y)	TΡi	TPm	TP_z
Time 🗡						
Input size						
Distribution						
Error rate						

Advantage 2:

	H(X)	I(X; Y)	H(X Y)	TΡi	TPm	TP_z
Time 🗡	_	—	—	1		
Input size						
Distribution						
Error rate						

Advantage 2:

	H(X)	I(X; Y)	H(X Y)	TPi	TPm	TP_z
Time 🗡	_	_	—	\searrow	\checkmark	-
Input size						
Distribution						
Error rate						

Advantage 2:

	H(X)	I(X; Y)	H(X Y)	TPi	TPm	TP_z
Time	_	—	_	\searrow	\nearrow	-
Input size	7	7	_	~	\nearrow	-
Distribution	\searrow	\searrow	_	\searrow	—	—
Error rate	_	\searrow	7	\searrow	\searrow	-

Advantage 3:

Speed-accuracy tradeoff

Advantage 3:

Speed-accuracy tradeoff

Advantage 4:

Equivocation provides information about

how users make errors

The error random variable:

$$E = \begin{cases} 0 & \text{if } X = Y; \\ 1 & \text{if } X \neq Y. \end{cases}$$

The error rate:

$$P_e = P(X \neq Y)$$


```
The error rate P_e has binary entropy:
```

$$H(E) = -P_e \log_2 P_e - (1 - P_e) \log_2 (1 - P_e)$$

$$I(X;Y) = H(X) - H(X|Y)$$
$$H(X|Y) \le H(E) + P_e \times H(Z|E = 1)$$
Fano's inequality.

[Theorem 2.10.1] Elements of information theory. Cover, T. M., & Thomas, J.A. (2012).

$$I(X;Y) = H(X) - H(X|Y)$$
$$H(X|Y) \le H(E) + P_e \times H(Z|E = 1)$$

The fact that users make errors. At most I bit.

Information-theoretic Measures

Wanyu Liu, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
Information-Theoretic Analysis of Human Performance for Command Selection. (INTERACT '17).
Wanyu Liu, Antti Oulasvirta, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
Information-theoretic Measures for Characterizing Interaction (TOCHI '19) [under preparation]

Contribution

* Other "BIG" applications

Bayesian Information Gain for Guiding Design Exploration (in collaboration with Luana Micallef, University of Copenhagen)

BIGnote: Bayesian Information Gain for Collaborative Music Composition (came up with the idea during lucid dreaming) August 10, 2018, 12:46 AM

* Other "BIG" applications

Refine "BIG" framework

Model real user behavior $P(Y = y | \Theta = \theta, X = x)$ User independent Machine learning Shared control Maximize other utility function

- * Other "BIG" applications
- **Refine "BIG" framework**

* Information-theoretic measures for other interaction tasks

Continuous input Taking advantage of equivocation

Main publications

Wanyu Liu, Rafael Lucas D'Oliveira, Michel Beaudouin-Lafon, and Olivier Rioul. BIGnav: Bayesian Information Gain for Guiding Multiscale Navigation. (CHI '17).

Wanyu Liu, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard. Information-Theoretic Analysis of Human Performance for Command Selection. (INTERACT '17).

Wanyu Liu, Olivier Rioul, Joanna McGrenere, Wendy Mackay, and Michel Beaudouin-Lafon. BIGFile: Bayesian Information Gain for Fast File Retrieval. (CHI '18).

Thank you everyone!

Merci à tous!

CON n RT D'ABBY

ABBY: WIENER BLUT OP.354 OLIVIER: WIND CRIES ABBY & MONEY FOR NOTHING (I WANT MY PHD) **MICHEL: SURPRISE YVES: FEELINGS DE MORRIS ALBERT & UNE BLUES BRUNO: JAZZ IMPROVISATION JEAN-PHILIPPE: JAZZ IMPROVISATION** TÉO: BACH À LA JAZZ **ABBY: LES PATINEURS OP.183 PLUS DE SURPRISES SUR PLACE**

LE CONCERT SERA SUIVI PAR UNE SOIRÉE DE DANSE: LA VALSE VIENNOISE, LE TANGO ARGENTIN, LA SALSA, LE FOXTROT, LE DISCOFOX, LA BACHATA, LE ROCK, ETC. **20H30** LE 22 NOVEMBRE 2018 **LA POMME D'EVE** 1 RUE LAPLACE, 75005 PARIS

DRESSCODE: FORMEL

Concert party

Prediction algorithm: AccessRank

$$w_n = w_{m_n}{}^{\alpha} w_{crf_n}{}^{\frac{1}{\alpha}} w_{t_n}$$

Prediction algorithm: AccessRank

$$w_n = w_{m_n}^{\alpha} w_{crf_n}^{\frac{1}{\alpha}} w_{t_n}$$

A Markov chain model

Prediction algorithm: AccessRank

$$w_n = w_{m_n}^{\alpha} w_{crf_n}^{\frac{1}{\alpha}} w_{t_n}$$

A combined recency and frequency model

Prediction algorithm: AccessRank

$$w_n = w_{m_n}^{\alpha} w_{crf_n}^{\frac{1}{\alpha}} w_{t_n}$$

A time weighting model